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Motivation: Air Traffic Management
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Motivation: Air Traffic Management

: Maximization of “free flight” airspace
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8 Direct-to flight (as a choice among “free flight”) increases the
complexity of air traffic patterns
Actually... 4 Direct-to flight increases the complexity of air traffic patterns
and we have something to study...
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Motivation: Air Traffic Management
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How to model? – Graph drawing & thicknesses

Thickness (θ)
Tutte (1963), “classical” planar decomposition

Geometric thickness (θ̄)
Dillencourt et al. (2000)

: only straight lines

Book thickness (bt)
Bernhart and Kainen (1979)

: convex positioning of nodes

v2

v0v3

v1

v4 v5

v2

v0

v3

v1

v4

v5θ(G) ≤ θ̄(G) ≤ bt(G)

4 Applications in VLSI & graph visualization

8 θ, θ̄, bt characterize the graph (minimizations over all allowed drawings)
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Geometric graphs and graph drawings

Definition 1.1 (Geometric graph, Bose et al. (2006),
many Erdös papers).

A geometric graph G is a pair (V (G), E(G)) where V (G) is a set of
points in the plane in general position and E(G) is set of closed
segments with endpoints in V (G). Elements of V (G) are vertices
and elements of E(G) are edges, so we can associate this
straight-line drawing with the underlying abstract graph G(V,E).

We will transform this definition to the following:

Definition 1.2 (Drawing of a graph).

A drawing D of an (undirected) graph G(V,E) is an straight line
embedding of G onto R2. The drawing can be seen as a “1-1”
function D : V → R2. We will write D(G) to denote a drawing of
graph G.
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The drawing thickness

Definition 1.3 (Drawing thickness).

Let D be a drawing of G(V,E). We define the drawing thickness,
ϑ(D(G)) to be the smallest value of k such that each edge is assigned
to one of k planar layers and no two edges on the same layer cross

v1 v2

v3

v4

(a) D1(K4)

v1 v2

v3 v4

i1

(b) D2(K4)

Figure: 2 different drawings of the K4. ϑ(D1(K4)) = 1, ϑ(D2(K4)) = 2.
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The drawing thickness

Similar ideas appear (only?) in:

u Bernhart and Kainen (1979): “The σ-thickness bt(G, σ) is the
smallest k such that G has a k-book embedding with σ as a
printed cycle”
printing cycle: the order of the vertices around the equivalent
convex n-gon embedding on the plane

u Chung et al. (1987): “a book embedding with specific vertex
ordering”

Graph drawing Related graph classes

Complexity Combinatorial geometry
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Possible applications

ATM: Flight Level organization

4 Very dense traffic (lack of time & deviation alternatives)

4 Sparse traffic (excess of Flight Levels available)

Or...

Joseph A. Barbetta, 1990
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Graph thickness

Definition 2.1 (Graph (theoretical) thickness).

Graph-theoretical thickness, θ(G), is the minimum number of planar
graphs into which a graph G can be decomposed.

u The thickness of complete graphs is known for all n:

θ(Kn) =


1, 1 ≤ n ≤ 4

2, 5 ≤ n ≤ 8

3, 9 ≤ n ≤ 10

dn+2
6 e, 10 < n

= +

Figure: Planar decomposition of K5: θ(K5) = 2.
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Graph thickness

u θ(Km,n) =
⌈

mn
2(m+n−2)

⌉
, except for if mn is odd, m > n and

there is an even r, with m =
⌊
r(n−2)
n−r

⌋
([1]).

Complexity of THICKNESS:

Theorem 2.1.

Given a graph G, the decision problem whether G can be
decomposed into 2 planar layers is NP-complete.

Proof by Mansfield ([13]) uses PLANAR 3-SAT (with only 3 literals(!))
as the known NP-complete problem for the reduction.
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Graph thickness

Two equivalent ways to “see” a graph’s thickness:

u Pure planar decomposition
u The “best” drawing, edges being arbitrary curves

= +

Figure: Showing (and seeing) that θ̄(K3,5) = 2
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Geometric thickness

Definition 2.2 (Geometric thickness).

We define θ̄(G), the geometric thickness of a graph G, to be the
smallest value of k such that we can assign planar point locations to
the vertices of G, represent each edge of G as a line segment, and
assign each edge to one of k layers so that no two edges on the same
layer cross.

u As geometric thickness is a restriction over graph-theoretical
thickness (straight line segments), it is clear that for any graph
G stands θ(G) ≤ θ̄(G).

u By Fáry’s theorem, any planar graph G can be drawn in such a
way that all edges are straight line segments, therefore
θ̄(Gplanar) = 1.

u By definition, for any graph G and any drawing D it is true
that θ̄(G) ≤ ϑ(D(G)).
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Geometric thickness

Theorem 2.2 (Dillencourt et al. (2000)).

For the complete Kn, n ≥ 12 it is⌈
n

5.646
+ 0.342

⌉
≤ θ̄(Kn) ≤

⌈n
4

⌉

Figure: Drawing of K12 where θ̄(K12) = 3.
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Geometric thickness

Theorem 2.3 (Dillencourt et al. (2000)).

θ̄(Kn) =


1, 1 ≤ n ≤ 4

2, 5 ≤ n ≤ 8

3, 9 ≤ n ≤ 12

4, 15 ≤ n ≤ 16

For the complete bipartite graph Km,n it is:⌈
mn

2m+ 2n− 4

⌉
≤ θ(Km,n) ≤ θ̄(Km,n) ≤

⌈
min(m,n)

2

⌉

Open Problem 1.

What is the geometric thickness of K13 and K14? (3 or 4?)
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Thickness vs. geometric thickness

u We know that K6,8 has graph-theoretical thickness 2, but
geometric thickness 3.

u Ratio between book thickness and geometric thickness has been
proven unbounded by any constant factor:

u D. Eppstein ([8]) used lemmata from Ramsey theory to prove
there are graphs with thickness 3 and arbitrarily large geometric
thickness.

u Same problem for graphs with θ = 2 remains open.
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Geometric thickness

Recent result:

Theorem 2.4 (Durocher et al. (2013)).

Recognizing geometric thickness 2 graphs is NP-hard.

We may refer to the problem as GEOM.THICKNESS

Open Problem 2.

For a graph G, does the decision problem θ̄(G) ≤ 2 belong to class
NP?
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Book embeddings and thickness

Definition 2.3 (Book embedding (L. T. Ollman,1973)).

A k-book embedding β of G(V,E) is a placing of all v ∈ V along the
spine L of a book B, and a drawing of all edges e ∈ E as arbitrary
open (Jordan) arcs joining respective vertices, either in L or onto one
exactly of k book pages {P1, ..., Pk}, such that arcs on the same
page do not cross.

v0
v1
v2
v3
v4
v5

(a) A book embedding β of G
with 3 pages

v0
v2
v3
v1
v4
v5

(b) A book embedding βopt of
G with the optimum of 2 pages
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Book embeddings and thickness

Naturally we will define:

Definition 2.4 (Book thickness).

We define bt(G), the book thickness of a graph G, to be the smallest
value of k such that G has a k-book embedding.
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Book thickness alternative definition

Definition 2.5 (Book thickness via convex graph drawing).

If G has a connected component which is not a path, we can define
bt(G) as the smallest value of k such that vertices of G are placed in
convex position, each edge of G is a line segment, and each edge is
assigned to one of k layers so that no two edges on the same layer
cross.

v0
v2
v3
v1
v4
v5

v0

v2v3

v1

v4 v5

Figure: Book embedding and convex embedding.
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Convex graph drawing

Definition 2.6.

A drawing D of a graph G(V,E) is said to be convex if D maps set
V to a convex point set on R2.

We will often use the notation Dconv to distinguish these cases.
Analogously to linking geometric thickness with our drawing
thickness, we have:

u bt(G) ≤ ϑ(Dconv(G))
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Bounds of drawing thickness

Thickness (θ)
Tutte (1963), “classical” planar decomposition

Geometrical thickness (θ̄)
Dillencourt et al. (2000)

: only straight lines

Book thickness (bt)
Bernhart and Kainen (1979)

: convex positioning of nodes

v2

v0v3

v1

v4 v5

v2

v0

v3

v1

v4

v5

Geometrical thickness (θ̄)
Dillencourt et al. (2000)

: only straight lines

Book thickness (bt)
Bernhart and Kainen (1979)

: convex positioning of nodes
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Bounds of drawing thickness

L
ow

er
U

p
p

er
Geometrical thickness (θ̄)

(: only straight lines)

Book thickness (bt)
(: convex positioning of nodes)

⇒

Arbitrary drawing case

⇒
Convex drawing case

θ̄(G) ≤ ϑ(D(G)) bt(G) ≤ ϑ(Dconv(G))

ϑ(Dconv(G)) ≤
⌈
n
2

⌉
Key: bt(Kn) =

⌈
n
2

⌉
Bernhart and Kainen (1979)

v0

v1

v2

v3

v4

v5

v6

v7

v0

v1

v2

v3

v4

v5

v6

v7

v0

v1

v2

v3

v4

v5

v6

v7

v0

v1

v2

v3

v4

v5

v6

v7

?
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That is the question

Open Problem 3 (as stated by D. Wood).

What is the minimum number of colours such that every complete
geometric graph on n vertices has an edge colouring such that
crossing edges get distinct colours

Open Problem 3 (“Translation”).

Let the quantity ϑ(D(G)), |V | = n be bound by quantity A(n), for
any G of size n and drawing D. What is A(n)?

u The convex case dictates: A(n) ≥
⌈
n
2

⌉
u Easy to see that A(n) ≤ n− 1

u Bose et al. (2006) impoved the upper bound to n−
√

n
12
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A peculiar observation

u Dillencourt et al. (2000) proved (roughly) that θ̄(Kn) ≤
⌈
n/4

⌉
.

Along with having bt(G) =
⌈
n/2

⌉
we may ask:

Is the convex case the worst case for our drawing
thickness?

Then it would be A(n) =
⌈
n/2

⌉
and tight.
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Sparse vs. dense graphs’ drawings

v0

v4

v1

v5

v2

v5

v3

v7

(a) ϑ(Dadj(G
8
pair)) = 1

v0

v1

v2

v3

v4

v5

v6

v7

(b) ϑ(Dopp(G
8
pair)) = 4

v0

v1

v2

v3

v4

v5

v6

v7

(c) ϑ(Dconv(K8)) = 4

Lemma 3.1.

Let G(V,E) be drawn onto R2 via D. It is

θ̄(G) ≤ ϑ(D(G)) ≤ min
(
|E|, A(n)

)
for any D.

If it is indeed A(n) =
⌈
n/2

⌉
then what would be more interesting is

when ϑ(D(G)) <
⌈
n
2

⌉
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Determining ϑ(D(G)) is NP-complete

What we will use:

u Ehrlich et al. (1976), Eppstein (2003): Given a set of line
segments on the plane, it is NP-complete to determine if the
intersection graph of its edges is 3-colorable. In other words,
3-COLOR is NP-complete in SEG graphs

u Garey et al. (1980): COLOR in CIRCLE graphs is NP-complete

u CIRCLE 3-COLOR: is stated as polynomially solvable in
www.graphclasses.org with Garey et al. (1980) as a reference.(?)

Arbitrary drawing case Convex drawing case

⇒

D.THICK

⇒

conv-D.THICK

⇒
SEG graphs

⇒

CIRCLE graphsSEG graphs CIRCLE graphs⊃

34/
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Intersection and crossing graphs

Definition 4.1 (Intersection model (graph)).

Let S = {s1, ..., sn} be a family of line segments on the plane. Its
intersection model is the graph H(V,E) with V = {s1, ..., sn} and
sisj ∈ E ⇔ si intersects sj . We will denote here H = IS . And by
definition H ∈ SEG.

Definition 4.2 (Crossing model (graph)).

Let S = {s1, ..., sn} be a family of line segments on the plane. The
crossing graph of S is the graph H(V,E) with V = {s1, ..., sn} and
sisj ∈ E ⇔ si crosses sj . We will denote H = CS .

u Obviously, there are many sets S such that CS 6= IS .

u So, if we consider a drawing of a graph, its thickness
can be directy associated with the coloring of its
crossing graph CD(S).
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CIRCLE graphs

Definition 4.3.

A graph G is a CIRCLE graph if it has an intersection model of
chords of a circle.

v2

v0v3

v1

v4 v5 v0,1

v0,2

v0,3

v0,4

v1,2

v1,3

v1,4

v1,5

v2,3

v2,5

v3,5

v4,5
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CIRCLE graphs and convex graph drawings

Theorem 4.1.

Every convex drawing on n vertices D
(n)
conv is equivalent to any other

D
′(n)
conv as long as the ordering of the vertices around the defined

convex polygon remains the same, i.e. derives by rotation and
refletion of the initial ordering.

Proof.

See my Diploma Thesis.

u We can transform any convex drawing to an equivalent drawing
on a circle.

u Then, drawn edges are chords of the circle.
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conv-D.THICK is NP-complete

Theorem 4.2 (Chung et al. (1987)).

It is NP-complete to determine the pagenumber of a book embedding
with specific vertex ordering.
Or, using our terminology:
It is NP-complete to determine the drawing thickness of a convex
graph drawing.

u Chung et al.’s proof is an (easy) reduction from CIRCLE COLOR.

u We just note our slightly more generic class of convex drawings
through the conditions of equivalence.

u Therefore, D.THICK is also NP-complete.
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conv-D.THICK is NP-complete

The proof: tweaking the endpoints

Proposition 4.1.

For every graph G and convex drawing Dconv, CDconv(G) ∈ CIRCLE.

Question remains for CIRCLE 3-COLORABILITY
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SEG 3-COLORABILITY ≤P 3-D.THICK

Proposition 4.2.

For every graph G and drawing D, CD(G) ∈ SEG.

u Key: tweaking endpoints (shorten them) and splitting apart
intersecting parallel segments.

S = D(G)
G = CS S ′, IS

′
= G
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SEG 3-COLORABILITY ≤P 3-D.THICK

Proposition 4.3.

Let S be a set of line segments on the plane. G = IS ∈ SEG and we
can construct in poly-time some S′ such that CS

′
= G.

u Key 1: tweaking endpoints (extend them)

u Key 2: see parallel intersecting segments as an interval
graph

S G = IS
S ′, CS′ = G
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SEG 3-COLORABILITY ≤P 3-D.THICK

c1 c2 c3 c4

(d)

c1 c2 c3 c4

(e)

c1 c2 c3
c4

(f)

c1 c2 c3
c4

(g)

c1 c2 c3
c4

(h)

u MAX CLIQUE is polynomial time for interval graphs ([16]) and so
is the problem of finding and ordering every distinct maximal
clique, which can easily be solved in O(n) time using a sweep
line (greedy) algorithm.
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SEG 3-COLORABILITY ≤P 3-D.THICK

Theorem 4.3.

3-D.THICK is NP-complete.

u Actually, it is SEG COLORABILITY ≡P D.THICK
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Drawing thickness of star polygons/figures

u A star polygon {n/k}, with n, k positive integers, is a figure
formed by connecting with straight lines every kth point out of n
regularly spaced points lying on a circle.

u Originally, for a star polygon we have gcd(n, k) = 1, and if
gcd(n, k) > 1 we often come across the term “star figure”

u It is actually convex graph drawing, according to our
terminology. k is called density of the star polygon. Without loss
of generality, take k ≤ bn/2c.

(i) S6/2
(j) S12/5 (k) S14/4
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Drawing thickness of star polygons/figures

Theorem 5.1.

The drawing thickness of Sn/k is ϑ(Sn/k) =
⌈
n
bn
k
c
⌉

= k +
⌈
r
q

⌉
, the

integers satisfying the Euclidean division: n = k · q+ r, 0 ≤ r < k. In
addition, for k1 > k2 it is ϑ(Sn/k1) ≥ ϑ(Sn/k2).

(l) ϑ(S6/2) = 2
(m) ϑ(S12/5) = 6 (n) ϑ(S14/4) = 5

u Key for the proof is the quotient q which is the maximum
number of possible edges within a single layer
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Drawing thickness of star polygons/figures

u If gcd(n, k) = 1, then we can draw the figure without lifting our
pen and the quantity

⌈
n
q

⌉
is quite evident.

u Otherwise, key #2 of the proof is the gap of size p = gcd(n, k)
between the “minors” S(n/p)/(k/p).

S33/9S33/9 =
⌈

33
b33

9
c

⌉
=
⌈
33
3

⌉
= 11
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Point sets that dictate ϑ(D(Kn)) ≥ dn
2
e

A 2r-point set P in general position

on the plane is said to admit a perfect

cross-matching if there are exactly r

pairwise crossing segments that cover

all 2r points.We will denote the class

of such point sets by Ppcm.

Pach and Solymosi (1999): a point set P admits a perfect cross-matching if and
only if the number of halving lines h(P ) = r (in general it is h(P ) ≥ n), and there
is an O(n logn)-time (O(n)-space) algorithm that decides if P ∈ Ppcm.

Our interesting question was when ϑ(D(G)) <
⌈
n
2

⌉
(especially if our conjecture

prooves to be correct).

What we can answer now in polynomial time is if D(G) ∈ Ppcm and thus if all
edges-having lines are drawn (O(n) time to check), we are sure to have
ϑ(D(G)) = n/2.
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Point sets that allow ϑ(D(Kn)) ≤ dn
2
e

Bose et al. (2006), using plane spanning double stars:

w

v
L L1

L2

w

v

x

y

L0

L2

L1

L3

49/



Point sets that allow ϑ(D(Kn)) ≤ dn
2
e
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Triangulation Existence problems

For the following we consider a graph G(V,E) and a drawing D, and
our point set is P = D(V ) (|P | = n).

Point set triangulation (TRI): is a triangulation of the convex
hull of the point set P with exactly all points of P being vertices of
the triangulation. If h(P ) is the number of the points of P that
define its convex hull, then any triangulation of P includes
e = 3n− h(P )− 3 drawn segments/edges.

Polygon triangulation (POLY-TRI): is a decomposition of some
polygon defined on P . Every triangulation of such a n-gon on the
plane requires exactly n− 3 drawn segments/edges.

Convex triangulation (CONVEX TRI): The two definitions
coincide when the point set P is convex and thus only one (convex)
polygon is defined on P .
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Point set triangulation

Theorem 5.2 (Lloyd (1977) and in our words).

For an arbitrary drawing D of G(V,E), TRI of P = D(V ) is
NP-complete.
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Convex triangulation

CONVEX TRI is polynomially solvable ≥p CIRCLE IND. SET

IND. SET of circle graphs can be computed in polynomial time: O(n3) by Gavril (1973)
and up to the most recent O(nmin(d, α))-time output sensitive algorithm, d being the
density of the graph and α being its independence number, by Nash and Gregg (2010).

v2

v0v3

v1

v4 v5

Dconv(G)

v0,1

v0,2

v0,3

v0,4

v1,2

v1,3

v1,4

v1,5

v2,3

v2,5

v3,5

v4,5

CDconv(G)

Figure: Maximal set of 9 = 2 · 6− 3 pairwise non-crossing edges for a convex
drawing and the corresponding crossing graph with max. ind. set of size 9.
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What about POLY-TRI

Open Problem 4.

For given G, D, decide POLY-TRI on P = D(V ).

Proposition 5.1.

POLY-TRI ∈ NP.

Proof.

Easy to see that a non-deterministic algorithm can guess some subset
of E of size 2n− 3 and check in polynomial time if the set is
planar.
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Some more ideas for future work

The variants of our main problem
Open Problem 5.

What is the minimum number of colours such that every complete
geometric graph on n vertices has an edge colouring such that:
[Variant B] disjoint edges get distinct colours
[Variant C] non-disjoint edges get distinct colours
[Variant D] non-crossing edges get distinct colours
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Little example in this direction

Variant C: non-disjoint edges get distinct colours.

u Edges with same color are a plane matching (at most n/2 edges)

u Known lower bound: C(n) ≥ n− 1.

u Little improvement: C(n) ≥ n.

Proof.

On the board.
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The end

Thank you!
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